
The Rexx Parser
36 International Rexx Language Symposium

The Wirtschaftsuniversität Vienna, Austria, May 4-7 2025

Josep Maria Blasco
jose.maria.blasco@gmail.com

EPBCN – ESPACIO PSICOANALITICO DE BARCELONA
Balmes, 32, 2º 1ª — 08007 Barcelona, Spain

May the 5 , 2025

th

th

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

2The Rexx ParserJosep Maria Blasco

Notice
This whole document is an experiment in CSS printing. It comfortably mixes normal text and programs
beautified by the heavy prettyprinting produced by the Rexx Highlighter, and it can be viewed both as a
standard web page and as a slide show.

If you are viewing this file as a PDF, chances are good that you are looking at it as a slide show. If you are
viewing it as a web page, the suggested print settings to produce a PDF containing a slide show are: no
headers or footers, and background images active. This is true for the Chrome browser at the time of this
writing (Jan-May 2025).

The default style for Rexx fenced code blocks is dark . You can choose the light style by adding a style=light
query string to the url of this document.

1. HTML version: https://rexx.epbcn.com/rexx-parser/print/36/2025-05-05-The-Rexx-Parser/;
PDF version (slides): https://www.epbcn.com/pdf/josep-maria-blasco/2025-05-05-The-Rexx-Parser.pdf.↩

1

https://rexx.epbcn.com/rexx-parser/print/36/2025-05-05-The-Rexx-Parser/
https://www.epbcn.com/pdf/josep-maria-blasco/2025-05-05-The-Rexx-Parser.pdf

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

3The Rexx ParserJosep Maria Blasco

Introduction

Introduction Lists and trees: The two APIs

Extensibility The Tree API

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

4The Rexx ParserJosep Maria Blasco

Introduction
The Rexx Parser is a full Abstract Syntax Tree (AST) parser for the Open Object Rexx (ooRexx) language.

Since ooRexx is a functional superset of Classic Rexx, it can also be used to parse Classic Rexx programs.

The parser includes optional support for TUTOR-flavoured extended Unicode Rexx programs.

Although the Rexx Parser builds over the experience of writing the Rexx Tokenizer, it is a completely new
program, developed from scratch by Josep Maria Blasco in 2024 and 2025.

The Rexx Parser can be extended by using its module system, and comes with a sample "print" module.

Parsed programs can be manipulated using two different, complementary APIs: the Element API and the Tree
API.

2. See https://rexx.epbcn.com/TUTOR/.↩
3. See https://rexx.epbcn.com/tokenizer/.↩
4. https://www.epbcn.com/equipo/josep-maria-blasco/ and https://rexx.epbcn.com/josep-maria-blasco/.↩

2

3

4

https://rexx.epbcn.com/TUTOR/
https://rexx.epbcn.com/tokenizer/
https://www.epbcn.com/equipo/josep-maria-blasco/
https://rexx.epbcn.com/TUTOR/
https://rexx.epbcn.com/tokenizer/
https://www.epbcn.com/equipo/josep-maria-blasco/
https://rexx.epbcn.com/josep-maria-blasco/

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

5The Rexx ParserJosep Maria Blasco

Extensibility: The module system
Modules are ooRexx packages containing additional methods for the base parser classes.

-- Adds a "MakeArray" method to the "Do.Instruction" class
::Method "Do.Instruction::MakeArray"
/* ... */

The module loader uses the define method of the Class class to add the new methods to the
corresponding classes.
A sample "print" module is provided. When loaded, many internal Parser objects become printable (→
good for debugging).
Possible modules:

Expression evaluation.
Full interpretation.
Transpiling.
Code generation.
...

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

6The Rexx ParserJosep Maria Blasco

Lists and trees: The two APIs
The Parser receives an Open Object Rexx source program as an argument and fully parses it, including all
directives, keyword instructions and resources. The Parser then constructs two complementary
representations of the source program:

A full Abstract Syntax Tree representation of the parsed program. This representation can be accessed
by navigating the tree, using a set of method calls and constants collectively known as the Tree API. The
Tree API handles entities like the prolog of a program, its list of directives, the (optional) code body after a
directive, instructions, expressions, etc.

A doubly-linked list containing all the parsed elements, semantically decorated to indicate their syntactic
category and other properties. This complementary representation can be accessed by a set of methods
and constants collectively known as the Element API. The Element API handles Rexx tokens, other
elements in the source program that are not considered tokens, like comments and ignorable whitespace,
and other convenient markers, introduced by the Parser.

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

7The Rexx ParserJosep Maria Blasco

The Tree API
The Tree API is experimental at the moment of this writing, and there is little documentation about it, apart
from the Parser source code.

Our intention is to stabilize the Element API first, before starting work on the Tree API. The following example
uses methods that may not appear in the final specification.

 parser = .Rexx.Parser~new(name, source, options)
 package = parser~package -- This is not a Rexx:Package, but a
 -- different class defined by the parser
 prolog = package~prolog -- May be empty
 body = prolog~body -- A Code.Body object
 instructions = body~instructions -- An array
 Say instructions[2] -- "Say 'Hi'" (maybe)
 Say instructions[2]~expression -- "'Hi'"

More about the Tree API in the 2026 Symposium (hopefully!).

5. See https://rexx.epbcn.com/rexx-parser/doc/guide/treeapi/↩

5

https://rexx.epbcn.com/rexx-parser/doc/guide/treeapi/

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

8The Rexx ParserJosep Maria Blasco

The Element API

The Element API "Taken constants"

The Element chain Element subcategories, and the << operator

Special elements Compound variables

Element categories The 'elements' utility

Sets of categories, and the < operator

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

9The Rexx ParserJosep Maria Blasco

The Element API
The Element API is based on the Element class and its subclasses, on a set of constants defining the
various syntactical categories an element may have, and on another set of constants defining the different
variants ("subcategories") of symbols which are defined to be "strings or symbols which are taken as
constants".

 If element < .EL.EXPOSED_STEM_VARIABLE Then Do
 -- Things to do when "element" is an exposed stem variable
 End
 /* ... */
 If element << .METHOD.NAME Then Do
 -- "element" is a method name (a string or a symbol)
 End

Please note that the < and << methods have been overloaded to simplify querying for the category and
subcategory of an element.

6. See https://rexx.epbcn.com/rexx-parser/doc/guide/elementapi/.↩

6

https://rexx.epbcn.com/rexx-parser/doc/ref/classes/element
https://rexx.epbcn.com/rexx-parser/doc/guide/elementapi/

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

10The Rexx ParserJosep Maria Blasco

The Element chain
Elements are stored in a doubly-linked list, the element chain. The head of the chain is returned by the
firstElement method call of a Rexx.Parser instance. The next and prev methods of an element instance
are used to navigate the chain; they both return .Nil at the extremes of the chain.

 element = parser~firstElement
 Do While element \== .Nil
 -- Do something with "element"...
 element = element~next
 End

Elements may be standard Rexx tokens, and other code elements which are not tokens, like comments or
non-significant blanks, or
Tokens inserted by the Rexx parsing rules, like semicolons at the end of the line, or before and after the
THEN keyword, or
Other special elements, described below.

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

11The Rexx ParserJosep Maria Blasco

Special elements (1/2)
The Rexx Parser inserts a number of special elements in the element chain. These elements help to ensure
that the element chain has a number of convenient properties.

The Parser inserts a dummy end-of-clause marker at the beginning of the stream. This guarantees that
each clause is delimited by two end-of-clause ("EOC") markers.

 <EOC, element₁, ..., elementₙ, EOC>
 └─────── clause ──────┘

The Parser inserts a dummy EXIT instruction at the end of each code body. This ensures that all code
bodies contain at least an instruction.

 <EOC, Implicit-EXIT, EOC>
 └── minimal code body ──┘

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

12The Rexx ParserJosep Maria Blasco

Special elements (2/2)
The implicit EXIT instruction also provides a convenient anchor point for comments after the last
instruction and labels found at the end of a code body.

 -- This comment is attached to the SAY instruction
 Say "Bye!"
 -- This comment is attached to the implicit exit instruction
 a_label_here: -- This label points to the implicit EXIT instruction
 ::Requires "Some.program"

The parser inserts an additional pseudo-instruction after the last implicit EXIT instruction, the end-of-
source marker. This ends the element stream. As all instructions, it is flanked by end-of-clause markers,
so that all streams end with the sequence

 <EOC, Implicit-EXIT, EOC, End-Of-Source, EOC>
 └──────── end of an element stream ─────────┘

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

13The Rexx ParserJosep Maria Blasco

Element categories (1/2)
Every element has a category method, which returns a one-byte value that describes its syntactic category.

 category = element~category
 If category == .EL.COLON Then Do
 /* Things to do when 'element' is a colon */
 End

Categories are assigned from a set of more than 100 categories, described exhaustively in the Globals.cls
package. The Parser provides a set of global environment constants, to aid in the symbolic manipulation of
categories. The names of all these constants share a .EL. (for "ELement") prefix.

 .EL.OP.CASCADING_MESSAGE -- Identifies the "~~" operator
 .EL.RIGHT_BRACKET -- Identifies the right bracket "]"

https://rexx.epbcn.com/rexx-parser/doc/ref/classes/element/
https://rexx.epbcn.com/rexx-parser/doc/ref/classes/element/#category
https://rexx.epbcn.com/rexx-parser/doc/ref/categories/
https://rexx.epbcn.com/rexx-parser/doc/ref/categories/

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

14The Rexx ParserJosep Maria Blasco

Element categories (2/2)
Categories are very detailed and fine-grained. For example, there is a distinct category for every one of the
extended assignment character sequences, and for every simple or compound operator:

 -- Some extended assignment categories
 .EL.ASG.PLUS -- "+="
 .EL.ASG.MINUS -- "-="
 .EL.ASG.MULTIPLY -- "*="
 -- ...
 -- Some operator categories
 .EL.OP.PLUS -- Infix addition
 .EL.OP.PREFIX.PLUS -- Prefix "+"
 .EL.OP.GREATER_THAN -- ">" comparison
 .EL.OP.REFERENCE.GREATER_THAN -- ">" reference operator
 .EL.OP.CONCATENATION -- A compound operator

Compound elements may include intervening whitespace and comments. In these cases, the Parser assigns
the right category to the first character, and marks the rest as ignorable.

https://rexx.epbcn.com/rexx-parser/doc/glossary/#ignorable-element

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

15The Rexx ParserJosep Maria Blasco

Sets of categories, and the < operator
Since categories are very numerous, it is convenient, in many cases, to manage them collectively, as sets.
Many sets are defined by the Parser; they have symbolic names which start with .ALL. . As an example, here is
the definition of the .ALL.SYMBOLS set, extracted from Globals.cls :

 Call NewSet ALL.SYMBOLS, .ALL.VAR_SYMBOLS, .ALL.CONST_SYMBOLS, .ALL.NUMBERS

Since categories are one-byte values, sets can be conveniently represented as byte strings, so that checking
for set membership becomes simple and efficient, as it reduces to a simple contains method call. As a
convenience, the Parser overloads the < operator of the element class to work with both categories and sets.

 element < category -- means "element~category = category"
 element < set -- means "set~contains(element~category)"

The code of the Rexx Parser makes heavy use of this special notation.

https://rexx.epbcn.com/rexx-parser/doc/ref/classes/element/#less
https://rexx.epbcn.com/rexx-parser/doc/ref/classes/element/

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

16The Rexx ParserJosep Maria Blasco

"Taken constants"
In many places in the syntactic definition of Rexx and ooRexx, we find tokens that are defined to be "literal
strings or symbols taken as a constant", or some equivalent expression. Examples are the routine name
after a CALL instruction keyword; labels; method names; etc. These tokens received the unfortunate name
taken_constant in the ANSI standard (6.3.2.22), and this denomination, for lack of a better one, has stuck.

A taken constant which is a symbol has to be parsed differently than a standard symbol. For example, even if
the syntactical form of the symbol is that of a compound variable, no tail variable substitution takes place.

 Say stem.with.a.large.tail.55AA.12 -- A compound variable
 Call stem.with.a.large.tail.55AA.12 -- An internal routine name
 Exit

stem.with.a.large.tail.55AA.12: -- An (admittedly bizarre) routine name
 /* ... */

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

17The Rexx ParserJosep Maria Blasco

Element subcategories, and the << operator
All taken constants have a category of .EL.TAKEN_CONSTANT . These elements, and only these, have an
additional method, subcategory, which retrieves their subcategory. Similarly to categories, subcategories are
one-byte values identified by special environment variables which, in this case, share a .NAME suffix (some
special subcategory names end with .VALUE instead).

 .METHOD.NAME --

Similarly to < , the Parser overloads the << operator of the element class.

 If element << .RESOURCE.NAME Then Do
 -- Means
 -- If element~category == .EL.TAKEN_CONSTANT, -
 -- element~subcategory == .RESOURCE.NAME Then Do...
 /* [Things to do when "element" is a ::RESOURCE name] */
 End

https://rexx.epbcn.com/rexx-parser/doc/ref/classes/element/#subcategory
https://rexx.epbcn.com/rexx-parser/doc/ref/classes/element/#lessless
https://rexx.epbcn.com/rexx-parser/doc/ref/classes/element/

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

18The Rexx ParserJosep Maria Blasco

Compound variables (1/2)
Compound variables are a unique feature of Rexx. They have a dual nature: they are, at the same time,
variables and terms (i.e., expressions). In some cases, we may be interested in handling them as atomic
variables, and in some other cases, we may be interested in handling each of their components separately.

The Rexx Parser addresses this duality by tagging every compound variable with a category of
.EL.COMPOUND_VARIABLE (or .EL.EXPOSED_COMPOUND_VARIABLE if the variable has been exposed), and
simultaneously allowing to retrieve its components by using the parts instance method, which returns an array
of components.

The first element of the array is always the stem name, that is, it is of class .EL.STEM_VARIABLE or
.EL.EXPOSED_STEM_VARIABLE , and it includes the first dot in the compound variable name. The rest of the
components are a sequence of either simple variables, of class .EL.SIMPLE_VARIABLE or
.EL.EXPOSED_SIMPLE_VARIABLE ; signless integers, of class .EL.INTEGER_NUMBER ; pure dotless constant
symbols, of class .EL.SYMBOL_LITERAL ; or separator dots, of class .EL.TAIL_SEPARATOR .

https://rexx.epbcn.com/rexx-parser/doc/ref/classes/element/#parts

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

19The Rexx ParserJosep Maria Blasco

Compound variables (2/2)
As an example, the following code fragment defines an exposed variable, and shows the contents of the
returned parts array.

 ::Method aMethod
 -- Define an exposed variable
 Expose exp
 stem.var.exp.12.2a
 -- Invoking the 'parts' method will return an array containing:
 -- [1]: an EL.STEM_VARIABLE (i.e., "stem."; please note that the first
 -- period is always part of the stem name.
 -- [2]: an EL.SIMPLE_VARIABLE, "var".
 -- [3]: an EL.TAIL_SEPARATOR, namely the second period, ".".
 -- [4]: an EL.EXPOSED_SIMPLE_VARIABLE, "exp".
 -- [5]: another EL.TAIL_SEPARATOR.
 -- [6]: an EL.INTEGER_NUMBER, "12".
 -- [7]: another EL.TAIL_SEPARATOR.
 -- [8]: an EL.SYMBOL_LITERAL, "2a".

Please note that, since exposed compound variable detection is based on a static analysis of the source
program, it may produce incorrect results in certain cases.

https://rexx.epbcn.com/rexx-parser/doc/ref/classes/element/#parts

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

20The Rexx ParserJosep Maria Blasco

The 'elements' utility
The elements utility displays the whole element chain, including compound variable details.

C:\rexx-parser\samples>elements hi.rex
elements.rex run on 26 Apr 2025 at 15:53:45

Examining hi.rex...

Elements marked '>' are inserted by the parser.
Elements marked 'X' are ignorable.
Elements marked 'A' have isAssigned=1.
Compound symbol components are distinguished with a '->' mark.

[from : to] >XA 'value' (class)
 --------- --------- --- ---------------------------
[1 1: 1 1] > ';' (an EL.END_OF_CLAUSE)
[1 1: 1 4] 'SAY' (an EL.KEYWORD)
[1 4: 1 5] X ' ' (an EL.WHITESPACE)
[1 5: 1 9] 'Hi' (an EL.STRING)
[1 9: 1 9] > ';' (an EL.END_OF_CLAUSE)
[1 9: 1 9] > '' (an EL.IMPLICIT_EXIT)
[1 9: 1 9] > ';' (an EL.END_OF_CLAUSE)
[1 9: 1 9] > '' (an EL.END_OF_SOURCE)
[1 9: 1 9] > ';' (an EL.END_OF_CLAUSE)
Total: 9 elements and 0 compound symbol elements examined.

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

21The Rexx ParserJosep Maria Blasco

Error handling

Parser errors and program errors The rxCheck utility

Early checks

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

22The Rexx ParserJosep Maria Blasco

Error handling
The Parser may encounter two different kind of errors:

Internal errors, that is, errors present in the Parser itself, and
Parsed program errors, that is, errors present in the source program that is being parsed.

Both kinds of errors have to be reported, and they have to be reported differently.

When the parsed program contains a parse-time syntax error, the parsing process is unconditionally
terminated, and the Rexx Parser informs the caller by producing a specially-crafted 98.900 ("Execution error")
syntax error. The ADDITIONAL array returned as part of the condition object contains the original syntax error
code, the offending line number, and also the original ADDITIONAL array used to raise the error, which contains
all the error message substitution instances.

By default, the Rexx Parser attempts to mimic the behaviour of the Open Object Rexx interpreter, by detecting
exactly the same errors in the same circumstances. The current distribution contains more than 600 tests that
compare the errors produced by the Parser and by ooRexx and guarantee that they are the same.

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

23The Rexx ParserJosep Maria Blasco

Early checks (1/3)
When requested, the Parser is also able to detect, at parse time, some errors that ooRexx only detects at
execution time.

SIGNAL instructions.
When a non-calculated SIGNAL instruction if found (that is, one that is not using the VALUE option), the label
name is inspected and compared to all the labels present in the current code body. If the label is not found, a
SYNTAX error 16.1 is raised ().

debug = 0
If debug Then SIGNAL Next -- ==> SYNTAX 16.1: Label "NEXT" not found.
-- Do something
Exit

Naxt: -- Typo!

All early checks are optional.

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

24The Rexx ParserJosep Maria Blasco

Early checks (2/3): GUARD instructions
GUARD instructions are only allowed inside a method call, but the ooRexx interpreter only detects these errors at
execution time.

The Rexx Parser can optionally detect incorrect GUARD instructions at parse time. When a code body is not a
method body (that is, when it is either the prolog or a routine body) and a GUARD instruction is found,

Say "It works in ooRexx"
Exit

-- The following instruction is illegal a prolog, irrespective
-- of the fact that it will never be executed.

Guard On -- ==> SYNTAX 99.911: GUARD can only be issued in an object method invocation.

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

25The Rexx ParserJosep Maria Blasco

Early checks (3/3): Built-in functions
Some of the checks done against BIFs (please note that the following example progam is synthetic: the Parser
would stop immediately after the first error).

/* Maximum number of arguments */
LENGTH(a, b) -- ==> 40.4: Too many arguments in invocation of LENGTH; maximum expected is 1.
/* Minimum number of arguments */
COPIES() -- ==> 40.3: Not enough arguments in invocation of COPIES; minimum expected is 2.
/* Missing required arguments */
LEFT(, 2) -- ==> 40.5: Missing argument in invocation of LEFT; argument 1 is required.
/* Arguments that have to be whole numbers */
LEFT(a, 2.5) -- ==> 40.12: LEFT argument 2 must be a whole number; found "2.5".
/* Whole numbers that have to be positive (or non-negative) */
SUBSTR(a, 0) -- ==> 93.924: Invalid position argument specified; found "0".
/* Closed choice literals */
STRIP(a, "X") -- ==> 93.915: Method option must be one of "BLT"; found "X"
 -- (--> a ooRexx bug: there is no method involved here).
/* ... */

Please refer to https://rexx.epbcn.com/rexx-parser/doc/ref/classes/rexx.parser/early-check/
for detailed information.

https://rexx.epbcn.com/rexx-parser/doc/ref/classes/rexx.parser/early-check/

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

26The Rexx ParserJosep Maria Blasco

The rxCheck utility
To parse and check a program file or single line of Rexx code, use:

 rxcheck [options] (filename | -e "rexx code")

By default, all early check options are enabled, but you can individually disable all of them.

C:\rexx-parser>rxcheck -e "Exit; Say Left(a,b,c,d)"
Syntax error 40.004 at line 1. Additional: 1: 'LEFT', 2: '3':
 1 *-* Exit; Say Left(a,b,c,d)
Error 40 running INSTORE line 1: Incorrect call to routine.
Error 40.4: Too many arguments in invocation of LEFT; maximum expected is 3.

Additional options:

emptyassignments : allow empty assignments (i.e., instructions like a = , meaning a = "").
extraletters : specify a list of characters that are to be considered letters by the tokenizer. Please note
that this can work for "@" , "#" and "$" , which are ASCII characters, but not for "¢" , which is Unicode
"C2A2"U , since the Parser does not support multi-byte characters.

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

27The Rexx ParserJosep Maria Blasco

Further work

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

28The Rexx ParserJosep Maria Blasco

Further work
Stabilize the Element API, after a period of public discussion.
Work towards a first public version of the Tree API (to be presented in the 2026 Symposium).
Improve and extend the optional early, parse-time, detection of errors that are only detected at run-time by
ooRexx.
Explore the possibilities associated with parse-time constant expressions, for example, dead code
elimination.
Add optional support for other Rexx dialects, like Regina Rexx, BREXX, Jean Louis Faucher's Executor,
etc.
Explore some form of transpiling, or even Rexx code generation (i.e., Rexx implemented in Rexx), by
creating the appropriate optional modules. Maybe create a toy implementation of Classic Rexx for the
Rexx Architecture Review Board (full ooRexx is probably too ambitious, but maybe a limited subset could
be implemented).
Play with language extensions.
...

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

29The Rexx ParserJosep Maria Blasco

Acknowledgements

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

30The Rexx ParserJosep Maria Blasco

Acknowledgements
Jean Louis Faucher has integrated TUTOR into ooRexxShell, and Rony Flatscher has included TUTOR and the
Rexx Parser in the net-oo-rexx distribution.

Some preliminary versions of the Rexx Parser and its accompanying subproject, the Rexx Highlighter, have
been tested by different members of the RexxLA community, including, but not limited to Gilbert Barmwater,
Jean Louis Faucher, Rony Flatscher, Ruurd-Jan Idenburg, René Jansen and Till Winkler; I want to thank them
all for their observations and enhancement proposals.

I also want to thank my colleagues at EPBCN, Laura Blanco, Silvina Fernández, Mar Martín, David Palau, Olga
Palomino and Amalia Prat, who have read several drafts of this presentation and helped to improve it with their
comments and suggestions.

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

31The Rexx ParserJosep Maria Blasco

Questions?

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

32The Rexx ParserJosep Maria Blasco

References

36th International Rexx Language Symposium - 4 May 2025 to 7 May 2025 - The Wirtschaftsuniversität Vienna, Austria and online

33The Rexx ParserJosep Maria Blasco

References
The Rexx Parser can be downloaded at:

https://rexx.epbcn.com/rexx-parser/ (preferred: better Rexx highlighting)
https://github.com/JosepMariaBlasco/rexx-parser

TUTOR can be downloaded at:

https://rexx.epbcn.com/TUTOR/ (preferred: better Rexx highlighting)
https://github.com/JosepMariaBlasco/TUTOR

Executor can be downloaded at:

https://github.com/jlfaucher/executor

The net-oo-rexx bundle can be downloaded at:

https://wi.wu.ac.at/rgf/rexx/tmp/net-oo-rexx-packages/

https://rexx.epbcn.com/rexx-parser/
https://github.com/JosepMariaBlasco/rexx-parser
https://rexx.epbcn.com/TUTOR/
https://github.com/JosepMariaBlasco/TUTOR
https://github.com/jlfaucher/executor
https://wi.wu.ac.at/rgf/rexx/tmp/net-oo-rexx-packages/

